Watch on lizrenteria.tumblr.com

Messing around. #moirepattern #interferencepattern #imacscreen #iphonevid

Particle-wave duality demonstrated with largest molecules yet

One of the deepest mysteries in quantum physics is the wave-particle duality: every quantum object has properties of both a wave and a particle. Nowhere is this effect more beautifully demonstrated than in the double-slit experiment: streams of particles (photons, electrons, whatever) are directed at a barrier with two narrow openings. While each particle shows up at the detector individually, the population as a whole creates an interference pattern as though they are waves. Neither a pure wave nor a pure particle description has proven successful in explaining these experiments.

Now researchers have successfully performed a quantum interference experiment with much larger and more massive molecules than ever before. Thomas Juffmann et al. fired molecules composed of over 100 atoms at a barrier with openings designed to minimize molecular interactions, and observed the build-up of an interference pattern. The experiment approaches the regime where macroscopic and quantum physics overlap, offering a possible way to study the transition that has frustrated many scientists for decades.

Read the comments on this post

Particle-wave duality demonstrated with largest molecules yet

One of the deepest mysteries in quantum physics is the wave-particle duality: every quantum object has properties of both a wave and a particle. Nowhere is this effect more beautifully demonstrated than in the double-slit experiment: streams of particles (photons, electrons, whatever) are directed at a barrier with two narrow openings. While each particle shows up at the detector individually, the population as a whole creates an interference pattern as though they are waves. Neither a pure wave or a pure particle description has proven successful in explaining these experiments.

Now researchers have successfully performed a quantum interference experiment with much larger and more massive molecules than ever before. Thomas Juffmann et al. fired molecules composed of over 100 atoms at a barrier with openings designed to minimize molecular interactions, and observed the build-up of an interference pattern. The experiment approaches the regime where macroscopic and quantum physics overlap, offering a possible way to study the transition that has frustrated many scientists for decades.

Read the comments on this post


http://dlvr.it/1MVMRB
Text
Photo
Quote
Link
Chat
Audio
Video