goeke

Watch on coolkidstable.tumblr.com

ADDITIONAL MUSIC MONDAY BONUS

Here’s what I like about this one: Sawyer gets all excited about “work the middle” then gets all revolted about “stroke it for me.” Like, what’s the difference, @$$hole? Then it hits me: the difference is that with the former, he just gets to lay there, and with the latter, he actually has to work. And not for himself; he has to stroke it for someone else. And so of course, he wants nothing to do with it.

And THAT’s what’s wrong with America.

[ Authors ]
Lijo T. George, K. S. Dwarakanath, M. Johnston-Hollitt, N.Hurley-Walker, L. Hindson, A. D. Kapińska, S. J. Tingay, M. Bell, J. R. Callingham, Bi-Qing For, P. J. Hancock, E. Lenc, B. McKinley, J.Morgan, A.Offringa, P. Procopio, L. Staveley-Smith, R. B. Wayth, Chen Wu, Q. Zheng, G. Bernardi, J. D. Bowman, F. Briggs, R. J. Cappallo, B. E. Corey, A. A. Deshpande, D. Emrich, R. Goeke, L. J. Greenhill, B. J. Hazelton, D. L. Kaplan, J. C. Kasper, E. Kratzenberg, C. J. Lonsdale, M. J. Lynch, S. R. McWhirter, D. A. Mitchell, M. F. Morales, E. Morgan, D. Oberoi, S. M. Ord, T. Prabu, A. E. E. Rogers, A. Roshi, N. Udaya Shankar, K. S. Srivani, R. Subrahmanyan, M. Waterson, R. L. Webster A. R. Whitney, A. Williams, C. L. Williams
[ Abstract ]
We have carried out multiwavelength observations of the near-by ($z=0.046$) rich, merging galaxy cluster Abell 3376 with the Murchison Widefield Array (MWA). As a part of the GaLactic and Extragalactic All-sky MWA survey (GLEAM), this cluster was observed at 88, 118, 154, 188 and 215 MHz. The known radio relics, towards the eastern and western peripheries of the cluster, were detected at all the frequencies. The relics, with a linear extent of $\sim$ 1 Mpc each, are separated by $\sim$ 2 Mpc. Combining the current observations with those in the literature, we have obtained the spectra of these relics over the frequency range 80 – 1400 MHz. The spectra follow power laws, with $\alpha$ = $-1.17\pm0.06$ and $-1.37\pm0.08$ for the west and east relics, respectively ($S \propto \nu^{\alpha}$). Assuming the break frequency to be near the lower end of the spectrum we estimate the age of the relics to be $\sim$ 0.4 Gyr. No diffuse radio emission from the central regions of the cluster (halo) was detected. The upper limit on the radio power of any possible halo that might be present in the cluster is a factor of 35 lower than that expected from the radio power and X-ray luminosity correlation for cluster halos. From this we conclude that the cluster halo is very extended ($>$ 500 kpc) and/or most of the radio emission from the halo has decayed. The current limit on the halo radio power is a factor of ten lower than the existing upper limits with possible implications for models of halo formation.

[ Authors ]
A. R. Neben, R. F. Bradley, J. N. Hewitt, G. Bernardi, J. D. Bowman, F. Briggs, R. J. Cappallo, A. A. Deshpande, R. Goeke, L. J. Greenhill, B. J. Hazelton, M. Johnston-Hollitt, D. L. Kaplan, C. J. Lonsdale, S. R. McWhirter, D. A. Mitchell, M. F. Morales, E. Morgan, D. Oberoi, S. M. Ord, T. Prabu, N. Udaya Shankar, K. S. Srivani, R. Subrahmanyan, S. J. Tingay, R. B. Wayth, R. L. Webster, A. Williams, C. L. Williams
[ Abstract ]
Detection of the fluctuations in 21 cm line emission from neutral hydrogen during the Epoch of Reionization in thousand hour integrations poses stringent requirements on calibration and image quality, both of which necessitate accurate primary beam models. The Murchison Widefield Array (MWA) uses phased array antenna elements which maximize collecting area at the cost of complexity. To quantify their performance, we have developed a novel beam measurement system using the 137 MHz ORBCOMM satellite constellation and a reference dipole antenna. Using power ratio measurements, we measure the {\it in situ} beampattern of the MWA antenna tile relative to that of the reference antenna, canceling the variation of satellite flux or polarization with time. We employ angular averaging to mitigate multipath effects (ground scattering), and assess environmental systematics with a null experiment in which the MWA tile is replaced with a second reference dipole. We achieve beam measurements over 30 dB dynamic range in beam sensitivity over a large field of view (65\% of the visible sky), far wider and deeper than drift scans through astronomical sources allow. We verify an analytic model of the MWA tile at this frequency within a few percent statistical scatter within the full width at half maximum. Towards the edges of the main lobe and in the sidelobes, we measure tens of percent systematic deviations. We compare these errors with those expected from known beamforming errors.