Deep Canadian mine yields ancient water

Scientists working 2.4 kilometres below Earth’s surface in a Canadian mine have tapped a source of water that has remained isolated for at least a billion years. The researchers say they do not yet know whether anything has been living in it all this time, but the water contains high levels of methane and hydrogen — the right stuff to support life.

Micrometre-scale pockets in minerals billions of years old can hold water that was trapped during the minerals’ formation. But no source of free-flowing water passing through interconnected cracks or pores in Earth’s crust has previously been shown to have stayed isolated for more than tens of millions of years.

“We were expecting these fluids to be possibly tens, perhaps even hundreds of millions of years of age,” says Chris Ballentine, a geochemist at the University of Manchester, UK. He and his team carefully captured water flowing through fractures in the 2.7-billion-year-old sulphide deposits in a copper and zinc mine near Timmins, Ontario, ensuring that the water did not come into contact with mine air.

To date the water, the team used three lines of evidence, all based on the relative abundances of various isotopes of noble gases present in the water. The authors determined that the fluid could not have contacted Earth’s atmosphere — and so been at the planet’s surface — for at least 1 billion years, and possibly for as long as 2.64 billion years, not long after the rocks it flows through formed. The study appears today in Nature.

'Extremely strange'

“The isotopic compositions that they see in these samples are extremely strange, and the preferred explanation in the article seems to me the most likely one,” says Pete Burnard, a geochemist at the Centre of Petrographic and Geochemical Research in Vandœuvre-les-Nancy, France. “For the moment, I think we have to conclude that there are 1.5-billion-year-old fluids trapped in the crust.”

The findings are “doubly interesting”, Ballentine says, because the fluid carries the ingredients necessary to support life. The isolated water supply, he says, provides “secluded biomes, ecosystems, in which life, you can speculate, might have even originated”. His colleagues are now working to establish whether the water does harbour life.

The findings may also have implications for life on Mars, Ballentine says, though he acknowledges that the idea is speculative. The surface of Mars once held water and its rocks are chemically no different from those on Earth, he says. “There is no reason to think the same interconnected fluids systems do not exist there.”

Original Article

[In geomicrobiology class]

Professor: Do you think this research project is important and worth all this money?  

Students: (We talk about its relevance to expanding human knowledge, astrobiology, and the future of humans and space travel.)

Professor: So if the government wanted to fund Star Trek to explore the universe, would you want to fund it?

My friend: Star Fleet.  You mean fund Star Fleet.  

Today’s story on Astrobio.net Nora Noffke, who studies stromatolite structures all over the world in lakes, rivers and marine environments. Astrobiologists (like Penny Boston, also cited in the story) are trying to figure out how to identify structures built by microbes because it may help identify similar biosignatures on planets like Mars.

"They’re very common, and have also been widely distributed throughout the earth’s entire history. But because they’re often buried in the sediments, you really have to know what to look for in order to see them—they’re not easy to detect." 

A microbial ecosystem beneath the West Antarctic ice sheet

Liquid water has been known to occur beneath the Antarctic ice sheet for more than 40 years, but only recently have these subglacial aqueous environments been recognized as microbial ecosystems that may influence biogeochemical transformations on a global scale. Here we present the first geomicrobiological description of water and surficial sediments obtained from direct sampling of a subglacial Antarctic lake. Subglacial Lake Whillans (SLW) lies beneath approximately 800 m of ice on the lower portion of the Whillans Ice Stream (WIS) in West Antarctica and is part of an extensive and evolving subglacial drainage network. The water column of SLW contained metabolically active microorganisms and was derived primarily from glacial ice melt with solute sources from lithogenic weathering and a minor seawater component. Heterotrophic and autotrophic production data together with small subunit ribosomal #RNA gene sequencing and biogeochemical data indicate that SLW is a chemosynthetically driven ecosystem inhabited by a diverse assemblage of bacteria and archaea. Our results confirm that aquatic environments beneath the Antarctic ice sheet support viable microbial ecosystems, corroborating previous reports suggesting that they contain globally relevant pools of carbon and microbes that can mobilize elements from the lithosphere and influence Southern Ocean geochemical and biological systems. http://bit.ly/1peVDyT #nature #npg

Text
Photo
Quote
Link
Chat
Audio
Video