7

At TEDxYouth@Manchester, genetics researcher Dan Davis introduces the audience to compatibility genes — key players in our immune system’s functioning, and the reason why it’s so difficult to transplant organs from person to person: one’s compatibility genes must match another’s for a transplant to take.

To learn more about these fascinating genes, watch the whole talk here»

(Images from Davis’s talk, Drew Berry’s animations, and the TED-Ed lessons A needle in countless haystacks: Finding habitable worlds - Ariel Anbar and How we conquered the deadly smallpox virus - Simona Zompi)

Your experiences today will influence the molecular composition of your body for the next two to three months, or perhaps for the rest of your life. Plan your day accordingly.
— 

UCLA’s Steve Cole from The Social Life of Genes.

Your DNA is not a blueprint. Day by day, week by week, your genes are in a conversation with your surroundings. Your neighbors, your family, your feelings of loneliness: They don’t just get under your skin, they get into the control rooms of your cells. 

My favorite silly gene names

On the heels of this post detailing the adorable story of the hedgehog gene, here’s some more of my favorite silly gene names, and the mutant reasons their redonkulous names:

  • tinman - Mutants do not develop a heart (Fruit fly)
  • dreadlocks - Causes photoreceptors to sprout dreadlock-like axon projections (Fruit fly)
  • tribbles - Causes out of control cell division (Fruit fly)
  • maggie - Larvae never mature (Fruit fly)
  • hamlet - Affects a type of sensory cell called “IIB” (Fruit fly)
  • dunce - Affects learning and memory (Fruit fly)
  • smaug - Represses Nanos, which means “dwarf” (Fruit fly)
  • groucho - Excessive bristles on the face (Fruit fly)
  • ken and barbie - Lack of external genitalia (Fruit fly)
  • indy - Stands for “I’m not dead yet”, a la Monty Python (Fruit fly)
  • lush and cheap date - Affect alcohol metabolism (Fruit fly)
  • RING - A protein segment that comes from “really interesting new gene”
  • tigger and pogo - Two families of transposable elements, or pieces of DNA that can jump around genomes (Multiple species)
  • kryptonite and superman - Kryptonite represses superman, which causes extra stamens to form in flowers (Arabadopsis)
  • Yuri gagarin - Protein involved in sensing gravity (Fruit fly)
  • callipyge - Leads to formation of large, round buttocks in sheep (from Greek for “beautiful buttocks”)
  • chablis, frascati, merlot, retsina, riesling, cabernet, grenache, chardonnay, chianti, pinotage, sauternes, weissherbst, zinfandel - A set of genes found to inhibit blood cell formation. Get it? Red and white?! (Zebrafish)

I think these would make an excellent art project, all you artistically-and-scientifically inclined people out there. Any of your favorites that I missed?

youtube

View the TED-Ed Lesson Where do genes come from?

When life emerged on Earth about 4 billion years ago, the earliest microbes had a set of basic genes that succeeded in keeping them alive. In the age of humans and other large organisms, there are a lot more genes to go around. Where did all of those new genes come from? Carl Zimmer examines the mutation and multiplication of genes.

Schizophrenia not a single disease but multiple genetically distinct disorders

New research shows that schizophrenia isn’t a single disease but a group of eight genetically distinct disorders, each with its own set of symptoms. The finding could be a first step toward improved diagnosis and treatment for the debilitating psychiatric illness.

image

The research at Washington University School of Medicine in St. Louis is reported online Sept. 15 in The American Journal of Psychiatry.

About 80 percent of the risk for schizophrenia is known to be inherited, but scientists have struggled to identify specific genes for the condition. Now, in a novel approach analyzing genetic influences on more than 4,000 people with schizophrenia, the research team has identified distinct gene clusters that contribute to eight different classes of schizophrenia.

“Genes don’t operate by themselves,” said C. Robert Cloninger, MD, PhD, one of the study’s senior investigators. “They function in concert much like an orchestra, and to understand how they’re working, you have to know not just who the members of the orchestra are but how they interact.”

Cloninger, the Wallace Renard Professor of Psychiatry and Genetics, and his colleagues matched precise DNA variations in people with and without schizophrenia to symptoms in individual patients. In all, the researchers analyzed nearly 700,000 sites within the genome where a single unit of DNA is changed, often referred to as a single nucleotide polymorphism (SNP). They looked at SNPs in 4,200 people with schizophrenia and 3,800 healthy controls, learning how individual genetic variations interacted with each other to produce the illness.

In some patients with hallucinations or delusions, for example, the researchers matched distinct genetic features to patients’ symptoms, demonstrating that specific genetic variations interacted to create a 95 percent certainty of schizophrenia. In another group, they found that disorganized speech and behavior were specifically associated with a set of DNA variations that carried a 100 percent risk of schizophrenia.

“What we’ve done here, after a decade of frustration in the field of psychiatric genetics, is identify the way genes interact with each other, how the ‘orchestra’ is either harmonious and leads to health, or disorganized in ways that lead to distinct classes of schizophrenia,” Cloninger said. 

Although individual genes have only weak and inconsistent associations with schizophrenia, groups of interacting gene clusters create an extremely high and consistent risk of illness, on the order of 70 to 100 percent. That makes it almost impossible for people with those genetic variations to avoid the condition. In all, the researchers identified 42 clusters of genetic variations that dramatically increased the risk of schizophrenia.

“In the past, scientists had been looking for associations between individual genes and schizophrenia,” explained Dragan Svrakic, PhD, MD, a co-investigator and a professor of psychiatry at Washington University. “When one study would identify an association, no one else could replicate it. What was missing was the idea that these genes don’t act independently. They work in concert to disrupt the brain’s structure and function, and that results in the illness.”

Svrakic said it was only when the research team was able to organize the genetic variations and the patients’ symptoms into groups that they could see that particular clusters of DNA variations acted together to cause specific types of symptoms.

Then they divided patients according to the type and severity of their symptoms, such as different types of hallucinations or delusions, and other symptoms, such as lack of initiative, problems organizing thoughts or a lack of connection between emotions and thoughts. The results indicated that those symptom profiles describe eight qualitatively distinct disorders based on underlying genetic conditions.

The investigators also replicated their findings in two additional DNA databases of people with schizophrenia, an indicator that identifying the gene variations that are working together is a valid avenue to explore for improving diagnosis and treatment.

By identifying groups of genetic variations and matching them to symptoms in individual patients, it soon may be possible to target treatments to specific pathways that cause problems, according to co-investigator Igor Zwir, PhD, research associate in psychiatry at Washington University and associate professor in the Department of Computer Science and Artificial Intelligence at the University of Granada, Spain.

And Cloninger added it may be possible to use the same approach to better understand how genes work together to cause other common but complex disorders.

“People have been looking at genes to get a better handle on heart disease, hypertension and diabetes, and it’s been a real disappointment,” he said. “Most of the variability in the severity of disease has not been explained, but we were able to find that different sets of genetic variations were leading to distinct clinical syndromes. So I think this really could change the way people approach understanding the causes of complex diseases.”

Five Discoveries Taking Science By Surprise:

1 | Lifestyle can change genes

We have come to think that if something is “in our genes”, it is our inevitable destiny. However, this is a gross oversimplification. We have each inherited a particular set of genes, but the outcome of that inheritance is not fixed. Our environment, diet and circumstance flood our bodies with molecules that switch the genes on or off. The result can make a huge difference to our destiny – and that of our descendants.

One example of these “epigenetic” changes occurs when a bundle of carbon and hydrogen atoms known as a methyl group attaches itself to the DNA and changes the way its instructions are carried out. The degree of the effect depends on the exact shapes into which the DNA in cells is coiled; sometimes certain genes become more or less exposed to external influences. But it can have major effects: the effect of methyl groups on DNA can make the difference between a foetus being healthy or stillborn.

Methyl groups often come from what we eat. Lack of food seems to have an epigenetic effect, too. A study of Dutch women starved by the Nazis during the second world war – the British actress Audrey Hepburn was among them – has found elevated levels of schizophrenia, breast cancer and heart disease. The data suggest that the alterations to which genes are turned on or off survive at least two generations: the one that suffered in the womb during the famine, and their children.

They may go much further. A 2011 study published by researchers at the Salk Institute in La Jolla, California, demonstrated epigenetic mutations that lasted for at least 30 generations in plants. So far, we haven’t proved such long-term changes in humans but there are hints that epigenetics cascades through the generations.

A 2001 study traced the long-term effects of nutrition – and malnutrition. Controlling for socioeconomic factors, a boy approaching puberty who overate at the beginning of the last century generally reduced his grandson’s life expectancy by a whopping 32 years. Other studies show that if boys start smoking before the age of 11 their sons will be significantly more overweight by age nine than their peers with fathers who only took up smoking later. The only way this can happen is if the act of smoking tobacco triggers some epigenetic change in the way DNA is activated in their sperm.

Standard biological thinking says that the body strips away molecules such as a methyl group from sperm and eggs so that they are “reset” to their default state. However, a study published by Cambridge researchers last year showed that approximately 1% of the changes get through the erasure process unscathed. What you eat, what your mother ate, the age when your grandfather started smoking, the amount of pollution in your neighbourhood – these factors have all been linked to epigenetic changes that get passed down through the generations. Armed with this new insight, we can take far more control of our health – and the health of future generations.

2 | The mind can affect the body

Positive thinking: the state of our mind affects our physical health. Photograph: Alamy

The US National Oceanographic and Atmospheric Administration has a piece of advice for anyone trying to survive immersion in freezing cold water: “Keep a positive attitude. Will to live makes a difference.” Does it really? It seems so.

We know that simple mind tricks can suppress the immune system in animals. First, you teach rats to associate saccharine with a stomach upset by spiking sweet drinks with a drug called cyclophosphamide. Then you just give them saccharine. They will be significantly more susceptible to pathogens than animals given saccharine but no conditioning.

Humans are not exempt from mind-immune system connections. Research carried out on 4,000 people over a 12-year period showed that a man whose wife has just died had a 25% higher chance of dying in those 12 years. The bereaved reported heart and circulatory problems twice as often as people in the control group.

In 2010 a study conducted in the US enumerated the dangers of loneliness. If you have “adequate” social connections, you are 50% more likely to live to the end of a specified period than those who are lonely. In other words, the effect of having good friends is roughly similar to giving up smoking or making a significant cut to your intake of alcohol. A 2012 study, which followed 2,000 US citizens aged 50 and above, found that being chronically lonely was associated with being almost twice as likely to die over the period of the study. Another 2012 study found that elderly people who simply want to live longer do indeed have a better life expectancy regardless of their physical health at the time their desire is expressed.

What used to be dismissed by science as superstition or old wives’ tales is now coming to the fore. The state of our minds has a palpable effect on our bodies, meaning that we are finally learning how to protect ourselves better from the worst ravages of illness.

Such knowledge is improving our state of mind too. In 2011 Hasse Karlsson, professor of psychiatry at the University of Helsinki, looked at 20 studies of brain changes induced by psychotherapy and concluded that we are moving towards a situation where we know so much about what psychotherapy does – how our subjective experience can be manipulated to change the physical structures of the brain – that specific types of psychotherapy can be used to target particular brain circuits. As Nobel laureate Eric Kandel has put it: “Psychotherapy is a biological treatment, a brain therapy.”

Sigmund Freud started this field in 1895. However, his “Project for a Scientific Psychology" was a miserable failure because we knew too little about the brain. Now, though, we have much better tools with which to explore the mind’s effect on the body, and Freud’s abandoned programme is finally bearing fruit.

3 | Quantum effects exist in biology

Plants use quantum theory to harvest energy from the sun. Photograph: Power & Syred/SPL

If you were designing life from scratch, you’d probably want to avoid the vagaries of quantum theory. Quantum particles such as atoms and electrons do strange things. They can be in two different places at once, or be affected by measurements performed on other particles. Surely such things could only be a hindrance to the smooth functioning of life’s processes?

That’s certainly what the physicist Erwin Schrödinger said in 1944. Life, he decided, had to be built on a scale that would bury all the weird quantum effects. But Schrödinger was wrong. Plants, for instance, use quantum theory to harvest energy from the sun.

Experiments performed on algae (their light-harvesting equipment is a little more accessible to experiments) have shown that they can channel the sun’s energy using “superposition”, where the energy travels through the organism using many paths at once. This trick effectively searches all possible paths simultaneously, and finds the quickest and thus most energy-efficient route. That means the energy reaches the plant’s storage centre before it dissipates.

There are also hints that smell is a quantum sense. Our noses appear to work by sensing the natural vibration frequencies of the bonds between atoms in molecules. Those frequencies determine whether a smell receptor is switched on and sends a signal to the brain. The best explanation for experimental observations involves an electron using a phenomenon known as quantum uncertainty to tunnel through a seemingly impenetrable barrier. Essentially, it borrows energy from the universe in order to leap across an empty space in the smell receptors and trigger the brain’s sense of smell. As long as it returns the energy quickly enough, the electron can use as much as it needs. This “quantum tunnelling” phenomenon is also at the heart of modern electronics.”

Then there’s the navigation trick birds use for migration. Studies of the European robin (and the robin had to wear a cute little eyepatch during this research) suggest that a particular configuration of a molecule in the robin’s retina – a configuration that can only be explained by the rules of quantum theory – allows the bird to sense Earth’s magnetic field and thus determine the direction in which it should fly.

We don’t know what other quantum feats nature performs, but the fact that these things happen in the warm, wet world of biological material suggests that we are missing a trick. At the moment, we can only access the quantum world if we cool atoms and molecules down to near absolute zero and isolate them from all vibrations and other disturbances. If we can work out how nature functions without such precautions, we might be able to harness quantum theory for ourselves, creating highly efficient solar panels, for instance, or super-sensitive navigation tools.

4 | The universe is a computer (and we are the programmers)

The study of black holes has led scientists to question the very nature of reality. Photograph: Nasa

At the forefront of knowledge – the place geneticist Jacob Bronowski once referred to as “the edge of uncertainty” – the biggest thinkers are starting to come to terms with an extraordinary idea. The universe, they say, behaves exactly like a computer, processing and generating information. In this scenario, we, by our conscious and unconscious actions, are playing the role of that computer’s programmers.

The first person to think of the cosmos as a human-powered computer was science-fiction author Isaac Asimov. In 1956, in The Last Question, he imagined a situation where two people engage in a bet that ends with humanity absorbed into the intelligent processor that we know as the universe. This was the inspiration behind Douglas Adams’s depiction of the Earth as a supercomputer in The Hitchhiker’s Guide to the Galaxy.

Truth, though, seems to be stranger than fiction. In the past few years, MIT engineer Seth Lloyd has calculated that a single atom can carry 20 binary digits (bits) of information and that two atoms can collide with an outcome that is entirely equivalent to the information processing that goes on within a computer. The concentration of chemicals within a mix can also store bits: cause these chemicals to react together, and they too can process the information like a computer. Viewed from this perspective, the whole universe is busy performing computations.

According to Lloyd’s calculations, a kilogram of matter can perform around a million billion billion billion billion billion operations every second. That processing power is applied to about 10 thousand billion billion billion bits of information. Since time began, Lloyd has calculated, the universe has performed around 10 to the power of 122 operations on 10 to the power of 92 binary digits. What are those operations? We see them as chemistry and physics, as the processes of life and the mechanisms of thought.

There are many more implications to this branch of science – it appears, for instance, that what we call reality is actually a projection of information held at the edge of the universe. The conclusion comes from the study of black holes. One of the sacred laws of physics is that information can’t be destroyed. That’s a problem when you consider the information contained in things that fall into black holes – unless it remains at the event horizon, which is the spherical “point of no return” surrounding a black hole. That means all the information about what’s inside the black hole is held at its edge. If that’s true for black holes, it’s probably true for the universe as a whole. And that means we are effectively the “holographic projection” of the information held on the spherical shell of the universe.

Whatever the truth we eventually settle on, it seems that life does have some meaning. Where scientists used to say we live out a purposeless existence, it turns out that we, by our actions and minds, are programming the universe. Or, as Carl Sagan put it: “We are a way for the universe to know itself.”

5 | Human beings are nothing special

Humans are not the only animals that use tools or have personality types. Photograph: Tim Gainey/Alamy

We have been taught to think of ourselves as the pinnacle of creation, but that pinnacle is getting rather crowded. In many cases, crows and chimps can use tools – and sometimes abstract reasoning – better than humans. If it’s culture that makes you feel superior, visit the Tanzanian Gombe chimps, Canadian killer whale communities or Australian dolphins: they all show distinct cultural practices in the way they relate with one another, hunt or sing. Animals show personality and morality – elephants can be empathetic or insensitive, rats can be lovers of fair play, spiders can be bold or spineless, chipmunks can be extrovert or shy. Cockroaches have feelings, too, it turns out.

Even the hard facts are letting us down: at the moment, researchers know of only a handful of genes unique to humans; it’s thought that, when the count is finished and the numbers are totted up, fewer than 20 of our 20,000 genes will be exclusively human.

It’s ironic that biology’s love of hard facts is what has delayed our discoveries about the things we share with animals. Darwin was quite convinced of animal personality, compassion and feelings. However, the 1882 publication of George Romanes’s book Animal Intelligence, a schmaltzy anthology of readers’ tales and anecdotes, sent scientists running from the subject, and it became taboo for nearly a century. That is why Jane Goodall suffered endless insults and derision for her assertions that chimps did not all behave the same way, and that they exhibited moods and personalities, went through childhood and adolescence and grieved at the deaths of their relatives.

One thing does set us apart: our linguistic abilities. These, however, are a quirk of evolution. Although nothing in the animal kingdom is using what we think of as language, gestures used by bonobos and orangutans come close. The fact that we have slightly different anatomical arrangements that allow us to speak is hardly a marker of a fundamental difference.

So we are top of the class, perhaps, but not in a class of our own. This understanding should lead us to re-examine the relationship we have with animals. It is already becoming clear that their personalities affect their ability to survive habitat change. A 2004 study of the three-spined stickleback found that the chemical ethinyl estradiol, which is contained in birth-control pills and has been found in significant concentrations in waterways around the world, makes female sticklebacks exhibit more risky behaviour. The result is lower survival times compared with those in unpolluted waters.

Our responsibility goes beyond habitat pollution and destruction. Our discoveries mean we are already changing the way (and extent to which) we experiment on animals. The next step may be more far‑reaching: how comfortable would we be, for instance, eating a lobster that we knew was terrified by its capture?

'Memories' pass between generations
Behaviour can be affected by events in previous generations which have been passed on through a form of genetic memory, animal studies suggest.

Experiments showed that a traumatic event could affect the DNA in sperm and alter the brains and behaviour of subsequent generations.

A Nature Neuroscience study shows mice trained to avoid a smell passed their aversion on to their “grandchildren”.

Experts said the results were important for phobia and anxiety research.

The animals were trained to fear a smell similar to cherry blossom.

The team at the Emory University School of Medicine, in the US, then looked at what was happening inside the sperm.

They showed a section of DNA responsible for sensitivity to the cherry blossom scent was made more active in the mice’s sperm.

Both the mice’s offspring, and their offspring, were “extremely sensitive” to cherry blossom and would avoid the scent, despite never having experiencing it in their lives.

Changes in brain structure were also found.

"The experiences of a parent, even before conceiving, markedly influence both structure and function in the nervous system of subsequent generations," the report concluded.

[read more]

Human brain specimen with glioblastoma multiforme.

Brain Cancer Cells Hide While Drugs Seek
Tumor cells temporarily lose mutation to evade drugs targeting mutation

A team of scientists, led by principal investigator Paul S. Mischel, MD, a member of the Ludwig Institute for Cancer Research and professor in the Department of Pathology at the University of California, San Diego School of Medicine, has found that brain cancer cells resist therapy by dialing down the gene mutation targeted by drugs, then re-amplify that growth-promoting mutation after therapy has stopped.

The findings are published in the December 5, 2013 online issue of Science.

“This discovery has considerable clinical implications because if cancer cells can evade therapy by a ‘hide-and-seek’ mechanism, then the current focus (of drug therapies) is unlikely to translate into better outcomes for patients,” said Mischel.

In recent years, new cancer therapies have emerged that target tell-tale gene mutations to identify specific cancer cells for destruction. Unfortunately, a variety of “resistance mechanisms” have also emerged, among them incomplete target suppression, second-site mutations and activation of alternative kinases or enzymes that maintain growth-promoting signals to the cancer itself. 

“Most research is aimed at developing better drugs or better drug combinations to suppress these downstream signals,” Mischel said. “However, one thing that has not been carefully considered is whether cancer cells can modulate the levels of – and thus their dependence on – the target of the drug, evade therapy, and then re-acquire the oncogene to promote tumor growth when the drug is withdrawn.”

More here

Male sexual orientation influenced by genes, study shows

A study of gay men in the US has found fresh evidence that male sexual orientation is influenced by genes. Scientists tested the DNA of 400 gay men and found that genes on at least two chromosomes affected whether a man was gay or straight.

A region of the X chromosome called Xq28 had some impact on men’s sexual behaviour – though scientists have no idea which of the many genes in the region are involved, nor how many lie elsewhere in the genome. Read more

Photograph: Elaine Thompson/AP

Children’s drawings indicate later intelligence

How 4-year old children draw pictures of a child is an indicator of intelligence at age 14, according to a study by the Institute of Psychiatry at King’s College London, published today in Psychological Science.

The researchers studied 7,752 pairs of identical and non-identical twins (a total of 15,504 children) from the Medical Research Council (MRC) funded Twins Early Development Study (TEDS), and found that the link between drawing and later intelligence was influenced by genes.

At the age of 4, children were asked by their parents to complete a ‘Draw-a-Child’ test, i.e. draw a picture of a child. Each figure was scored between 0 and 12 depending on the presence and correct quantity of features such as head, eyes, nose, mouth, ears, hair, body, arms etc. For example, a drawing with two legs, two arms, a body and head, but no facial features, would score 4. The children were also given verbal and non-verbal intelligence tests at ages 4 and 14.

The researchers found that higher scores on the Draw-a-Child test were moderately associated with higher scores of intelligence at ages 4 and 14. The correlation between drawing and intelligence was moderate at ages 4 (0.33) and 14 (0.20).

Dr Rosalind Arden, lead author of the paper from the MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre at the Institute of Psychiatry at King’s College London, says: “The Draw-a-Child test was devised in the 1920’s to assess children’s intelligence, so the fact that the test correlated with intelligence at age 4 was expected.What surprised us was that it correlated with intelligence a decade later.”

“The correlation is moderate, so our findings are interesting, but it does not mean that parents should worry if their child draws badly. Drawing ability does not determine intelligence, there are countless factors, both genetic and environmental, which affect intelligence in later life.”

The researchers also measured the heritability of figure drawing. Identical twins share all their genes, whereas non-identical twins only share about 50 percent, but each pair will have a similar upbringing, family environment and access to the same materials.

Overall, at age 4, drawings from identical twins pairs were more similar to one another than drawings from non-identical twin pairs. Therefore, the researchers concluded that differences in children’s drawings have an important genetic link. They also found that drawing at age 4 and intelligence at age 14 had a strong genetic link.

Dr Arden explains: “This does not mean that there is a drawing gene – a child’s ability to draw stems from many other abilities, such as observing, holding a pencil etc. We are a long way off understanding how genes influence all these different types of behaviour.”

Dr Arden adds: “Drawing is an ancient behaviour, dating back beyond 15,000 years ago. Through drawing, we are attempting to show someone else what’s in our mind. This capacity to reproduce figures is a uniquely human ability and a sign of cognitive ability, in a similar way to writing, which transformed the human species’ ability to store information, and build a civilisation.”

to many, gembond is either seen as a disease or a blessing or a curse, or just a chemical reaction on molting scales. However, the magically adept of all flights have ways to use this for their advantage. 

earth: Gembond is seen a blessing from the Earthshaker himself, that the dragon has great potential.

water: no opinions of gembond and no real magical davantage, but due to the tides water gems are the smoothest gems of any flight. However, due to the tides, there is so much salt on these gems that dragons have been known to eat them.

fire: gembond is seen as a gift, but not towards the dragon, but rather the clan. it signifies that there is a destiny for prestige in mining, smelting and other crafting. sadly the heat of the region often makes the gem lose shape and have a semi-molten interior, it is very painful for the dragon.

wind: gembond doesn’t affect their magic and they don’t have beliefs about it, but if you pass under wind territory it’s not uncommon to get hit by gems that were loosened and blew off because of the high wind speeds.

lightening: so many have tried to use gembond as a conductor. but hey at least it’s a needed component in some machinery they have so get to scraping them gems off.

shadow:  the more reflective your gems are, the more laughable. the more your gems resemble the glowing mushrooms, the better camoflauge. dragons with dark primary and secondary but cyan gems are often thought to be the land taking on a dragon shape to join in the fun. 

light: light dragons use their gems to create more reflections to intensify the light and channel their magic more properly. the more transparent the gems, the better.

ice: It is hard to tell wether it’s ice or actual gems, but the most magically skilled have turned their gems into unmelting ice. 

plague: gembond isn’t a disease here, but the gems are incredibly flaky and are known to stun, poison, or paralyze dragons who come into contact with the gems. with practice, a plague dragon can contract their wings fast enough to forcibly shed gem flakes on enemies.

nature: no real opinions, but if the dragon looks like a moving land mass with rocks and greens and flora, there’s a good chance they will be regarded as direct descendants of gladekeeper herself.

arcane: did you know arcane gembonds, if thrown hard enough, explode? it’s true! donate your body to Arcane Science today.

Text
Photo
Quote
Link
Chat
Audio
Video