The lost planet in Beijing ll 140921

Lets take a look at what happened today…

happy birthday to chen, but…

image

then probably….

image

okay,

image

but

image

image

and

image

not yet…

image

then…

image

image

O K A Y!

image

image

……

image

…..

image

We live to see that day, the history will remember… 

image

please add if i missed something„,

Gliese 832c: The closest potentially habitable exoplanet

This planet is only 16 light years away — could it harbor life? Recently discovered exoplanet Gliese 832c has been found in a close orbit around a star that is less bright than our Sun. An interesting coincidence, however, is that Gliese 832c receives just about the same average flux from its parent star as does the Earth. Since the planet was discovered only by a slight wobble in its parent star’s motion, the above illustration is just an artistic guess of the planet’s appearance — much remains unknown about Gliese 832c’s true mass, size, and atmosphere. If Gliese 832c has an atmosphere like Earth, it may be a super-Earth undergoing strong seasons but capable of supporting life. Alternatively, if Gliese 832c has a thick atmosphere like Venus, it may be a super-Venus and so unlikely to support life as we know it. The close 16-light year distance makes the Gliese 832 planetary system currently the nearest to Earth that could potentially support life. The proximity of the Gliese 832 system therefore lends itself to more detailed future examination and, in the most spectacularly optimistic scenario, actual communication — were intelligent life found there.

Image credit & copyright: The Planetary Habitability Laboratory @ UPR Arecibo; Discovery: Robert A. Wittenmyer (UNSW Australia) et al.

2
Gliese 667 Cc

An extrasolar planet, Gliese 667 Cc orbits Gliese 667 C, which is part of a triple-star system. It lies at a distance of 22.1 light years from Earth within the Scorpius constellation.

Gliese 667Cc was discovered in April 2012 by an international group of astronomers working at the European Southern Observatory in the Atacama Desert, northern Chile. It is a super-Earth, some 3.4 times the mass of Earth, orbiting a red dwarf star, Gliese 667 C. At the time of its discovery, scientists called it the most Earth-like object outside of the Solar System.

The discovery was made with the High Accuracy Radial Planetary Searcher (HARPS) telescope. Gliese 667 Cc receives 10% less light from its star than the Earth receives from the Sun, but as this light is mostly in the infra-red part of the electromagnetic spectrum, its effect is that the energy received at its surface is the same as Earth receives from the Sun.

The planet orbits its star over a four-week period at a distance of 0.12 AU (17.9 million kilometres). The likelihood is that it is tidally locked to the star, meaning that it always shows the same hemisphere to the surface of Gliese 667 C.

The temperature on Gliese 667 C is 3,400K (Kelvin) compared with the Sun’s 5,778K. Its habitable zone lies in an orbit between 0.11 astronomical units (AU) (16.4 million kilometres) and 0.23 AU (34.3 million kilometres) from the star. Gliese 667 Cc’s orbital distance seems to be comfortably within the habitable zone, should liquid water be present on its surface.

The surface temperature of Gliese 667 Cc could be approximately 30C in the presence of liquid water, but if the atmosphere consists of more massive molecules, the temperature will be higher, making surface conditions inhospitable to life. The tidal locking adds further complications as one hemisphere of the planet experiences constant daylight while the other is permanently dark. The temperature differences between the two hemispheres will have a strong influence on the planet’s global climate. In addition, the planet will receive frequent flares from its host star.

A further complication is that the Gliese 667 C star is part of a triple-star system. Gliese 667 A and Gliese 667 B are about 230 AU (34.2 billion kilometres) away. Despite the distance, they would be visible from the surface of the planet. The Sun could also be seen as a distant star from the surface of Gliese 667 Cc.

Credit: L. Calçada, Rory Barnes/ESO

Stellar Flare Hits HD 189733b

This artist’s impression shows exoplanet HD 189733b, as it passes in front of its parent star, called HD 189733A.

Hubble’s instruments observed the system in 2010, and in 2011 following a large flare from the star (depicted in the image). Following the flare, Hubble observed the planet’s atmosphere evaporating at a rate of over 1000 tonnes per second.

In this picture, the surface of the star, which is around 80% the mass of the Sun, is based on observations of the Sun from the Solar Dynamics Observatory.

Nearby Exoplanet Is Best Candidate For Supporting Life

by Lisa Winter

Finding new exoplanets is always awesome, but discovering exoplanets within the star’s habitable zone are exponentially more exciting.

A team led by Robert Wittenmyer of the University of New South Wales has announced the discovery of the Super-Earth Gliese 832 c, which could very well turn out to be the best candidate for extraterrestrial life discovered to date. It’s also fairly close, cosmologically speaking, which adds to the intrigue. The team’s paper has been accepted for publication in The Astrophysical Journal, but has been made available online in an open access format on arXiv.org.

Gliese 832 is a red dwarf star that is located 16.1 light-years away in the constellation Grus. Astronomers discovered a Jupiter analog orbiting the star back in 2009, but its orbit takes nine years to complete; far beyond the star’s habitable zone. Gliese 832 c looks much more promising. Though only two planets in the system are known, it appears to be organized quite similarly to our own solar system…

(read more: I Fucking Love Science)

illustration by PHL @ UPR Arecibo, NASA Hubble, Stellarium

Nearby super-Earth is best habitable candidate so far, astronomers say

On a clear night, you might be able to spot the red dwarf star Gliese 832 through a backyard telescope, as it is just 16 light years away. Today, astronomers announced the discovery of super-Earth planet orbiting this nearby star and say it might be the best candidate yet for habitable world.

Gliese 832c was spotted by an international team of astronomers, led by Robert A. Wittenmyer from UNSW Australia. They used high-precision radial-velocity data from HARPS-TERRA, the Planet Finder Spectrograph and the UCLES echelle spectrograph. This star is already known to have one additional planet, a cold Jupiter-like planet, Gliese 832 b, discovered in 2009.

Since red dwarf stars shine dimly, the habitable zones around these stars would be very close in. Gliese 832c complies with an orbital period of 36 days (it’s orbital companion Gliese 832 b orbits the star in 9.4 years.)

The newly found super-Earth has a mass at least five times that of Earth’s and the astronomers estimate it receives about the same average energy as Earth does from the Sun. “The planet might have Earth-like temperatures, albeit with large seasonal shifts, given a similar terrestrial atmosphere,” says a press release from the Planetary Habitability Laboratory. “A denser atmosphere, something expected for Super-Earths, could easily make this planet too hot for life and a ‘Super-Venus’ instead.”

Using the Earth Similarity Index (ESI) — a measure of how physically similar a planetary mass object is to Earth, where 1 equals the same qualities as Earth — Gliese 832 c has an ESI of 0.81. This is comparable to Gliese 667C c (ESI = 0.84) and Kepler-62 e(ESI = 0.83).

“This makes Gliese 832c one of the top three most Earth-like planets according to the ESI (i.e. with respect to Earth’s stellar flux and mass) and the closest one to Earth of all three, a prime object for follow-up observations. However, other unknowns such as the bulk composition and atmosphere of the planet could make this world quite different to Earth and non-habitable.”

In their paper, Wittenmyer and his colleagues noted that while Solar Systems like our own appear — so far — to be rare, the Gliese 832 system is like a scaled-down version of our own Solar System, with an inner potentially Earth-like planet and an outer Jupiter-like giant planet. They added that the giant outer planet may have played a similar dynamical role in the Gliese 832 system to that played by Jupiter in our Solar System.

Image credit: Planetary Habitability Laboratory at the University of Puerto Rico, Arecibo, NASA/Hubble, Stellarium

Text
Photo
Quote
Link
Chat
Audio
Video